$EmStat4R^{M}$

POTENTIOSTAT / GALVANOSTAT / IMPEDANCE ANALYZER (optional)

Contents

Desktop performance in a rugged enclosure	3
Supported Techniques	4
Measurement Specifications	5
System Specifications	6
EmStat4R EIS Accuracy Contour Plot	8
Standard EmStat4R Kit	9
PSTrace: Software for Windows	10
PStouch: App for Android	11
Software Development Kits for .NET	14
EmStat4R works with MethodSCRIPT™	13

> See for more information:

www.palmsens.com/es4r

Desktop performance in a rugged enclosure

The EmStat4R is a portable USB-powered and wireless Potentiostat, Galvanostat, and optional Frequency Response Analyser (FRA) for Electrochemical Impedance Spectroscopy (EIS). The EmStat4R is great for (sensor) applications that require low currents, from 30 mA down to picoamps, such as sensor applications.

Ideal for sensor applications

The Connection Module can be exchanged by the user with a Connection Module suitable for using Screen Printed Electrodes (SPE). This allows for transforming your lab instrument with cable to a cable-less solution for use in the field.

Main Specifications	
 potential range 	±3 V
 max. compliance voltage 	±5 V
 current ranges 	1 nA to 10 mA (8 ranges)
 max. current 	±30 mA
 electrode connections (SNS module) 	WE, RE, CE, and ground 2 mm banana pins

SPE Connection Module	
 sensor pitch 	2.54 mm
 electrode connections 	RE, WE, CE
 allowed sensor thickness 	Between 0.1 mm and 0.8 mm
 maximum sensor width 	11 mm

See section System Specifications on page 6 for more specifications.

Supported Techniques

The EmStat4R supports the following electrochemical techniques:

Voltammetric techniques

•	Linear Sweep Voltammetry Cyclic Voltammetry Fast Cyclic Voltammetry AC Voltammetry	LSV CV FCV * ACV *
Pul	sed techniques	
-	Differential Pulse Voltammetry	DPV

	, , , , , , , , , , , , , , , , , , ,	
•	Square Wave Voltammetry	SWV
•	Normal Pulse Voltammetry	NPV

These methods can all be used in their stripping modes which are applied for (ultra-) trace analysis.

Amperometric techniques

•	Chronoamperometry	CA
•	Zero Resistance Amperometry	ZRA
•	Chronocoulometry	CC
•	MultiStep Amperometry	MA
•	Fast Amperometry	FAM *
•	Pulsed Amperometric Detection	PAD
•	Multiple-Pulse Amperometric Detection	MPAD *

Galvanostatic techniques

•	Linear Sweep Potentiometry	LSP
•	Chronopotentiometry	СР
•	MultiStep Potentiometry	MP
•	Open Circuit Potentiometry	OCP
•	Stripping Chronopotentiometry	SCP or PSA *

Other

- Mixed Mode
 Potentiostatic and Galvanostatic
 Impedance spectroscopy at fixed frequency or frequency scan vs
 - fixed potential or fixed current
 - scanning potential or scanning current
 - o time

MethodSCRIPT[™] allows for developing custom techniques. See page 13 for more information.

^{*} This technique will be enabled with the release of PSTrace 5.10

Measurement Specifications

The following table shows limits for some technique-specific parameters.

	Parameter	Min	Мах
	 Conditioning time 	0	4000 s
All techniques	 Deposition time 	0	4000 s
(unless	 Equilibration time 	0	4000 s
otherwise specified)	 Step potential 	0.100 mV	250 mV
	 N data points 	3	1,000,000
• NPV	 Scan rate 	0.1 mV/s (100 µV step)	1 V/s (5 mV step)
• DPV	 Pulse time 	0.4 ms	300 ms
• SWV	 Frequency 	1 Hz	2500 Hz
• LSV • CV	Scan rate	0.01 mV/s (100 µV step)	500 V/s (200 mV step)
	 Interval time 	50 ms	300 s
• PAD	 Pulse time 	1 ms	1 s
	 N data points 	3	1,000,000 (> 100 days at 10 s interval)
• CA	 Interval time 	0.4 ms	300 s
• CP	Run time	1 ms	> year
• OCP			
	 N cycles 	1	20,000
• MM • MA	N levels	1	255
• MP	 Level switching overhead time 	+/-1 ms	
	 Interval time 	50 ms	300 s

System Specifications

General	
 dc-potential range 	±3 V
 compliance voltage 	±5 V
 maximum current 	±30 mA
 max. data acquisition rate 	1M samples/s

Potentiostat (controlled potential mode)

 applied potential resolution 	100 µV
 applied potential accuracy 	\leq 0.2% ±1 mV offset
current ranges	1 nA to 10 mA 8 ranges
 measured current resolution 	0.009% of CR (92 fA on 1 nA range)
 measured current accuracy 	< 0.2% of current ±20 pA ±0.2% of range
 bandwidth settings 	320 Hz, 3.2 kHz, 30 kHz or 570 kHz

Galvanostat (controlled current mode)

current ranges	10 nA, 1 uA, 100 uA, 10 mA
 applied dc-current 	±3 * CR (current range)
 applied dc-current resolution 	0.01% of CR
 applied dc-current accuracy 	< 0.4% of current ±20 pA ±0.2% of range
 potential ranges 	50 mV, 100 mV, 200 mV, 500 mv, 1 V
 measured dc-potential resolution 	96 μV (1 V) 48 μV (500 mV) 19.2 μV (200 mV) 9.6 μV (100 mV) 4.8 μV (50 mV)
 measured dc-potential accuracy 	\leq 0.2% potential, ±1 mV offset
 bandwidth settings 	320 Hz, 3.2 kHz, 30 kHz or 570 kHz

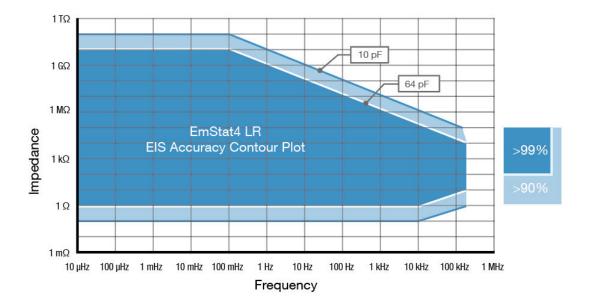
FRA / EIS (impedance measurements)		
 frequency range 	10 µHz to 200 kHz	
 ac-amplitude range 	1 mV to 900 mV rms, or 2.5 V p-p	

GEIS (galvanostatic impedance measurements)		
 frequency range 	10 µHz to 100 kHz	
 ac-amplitude range 	0.9 * CR A rms	

Electrometer

 electrometer 	amplifier	input
----------------------------------	-----------	-------

> 1 TΩ // 10 pF


bandwidth

10 kHz or 500 kHz

Other	
- housing	 aluminum body only: 11.1 x 6.0 x 2.7 cm with rubber sleeve: 11.8 x 6.8 x 3.3 cm
• weight	~ 310 g
• power	USB-C port
communication	USB-C or Bluetooth
battery life	Connected via Bluetooth: ~3 hours with cell on at 10 mA current ~5 hours with cell off
 internal storage space 	500 MB, equivalent to >15M datapoints

EmStat4R EIS Accuracy Contour Plot

Note

The accuracy contour plots were determined with an ac-amplitude of ≤10 mV rms for all limits, except for the high impedance limit, which was determined using an ac-amplitude of 250 mV. The standard 1 meter cell cables were used. Please note that the true limits of an impedance measurement are influenced by all components in the system, e.g. connections, the environment, and the cell.

Standard EmStat4R Kit

A standard EmStat4R kit includes a rugged carrying case with:

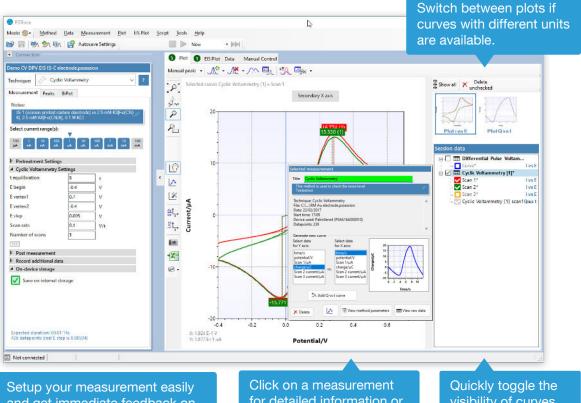
- EmStat4R instrument with SNS Connection Module (for use with 1 m cell cable) or SPE Connection Module (for use with Screen Printed Electrodes)
- USB-C cable
- 1 meter cell cable with 2 mm banana pins
- Dummy Cell


Optional:

 Optional additional SNS or SPE Connection Module

Also included:

- PSTrace software for Windows (on USB drive)
- Manual (hardcopy)
- Quick Start document
- Calibration report

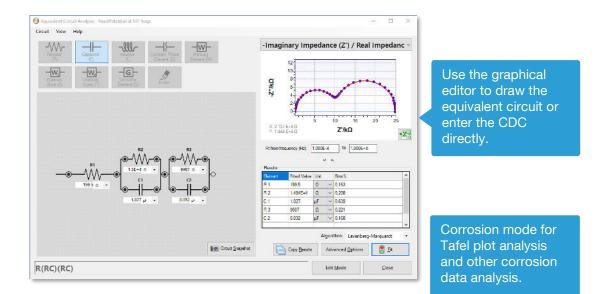


PSTrace: Software for Windows

PSTrace is designed to get the most out of your instrument right after installation, without going through a long learning period. It has three modes; the Scientific mode which allows you to run all the techniques our instruments have to offer, and two dedicated modes for Corrosion analysis and the Analytical Mode. The Analytical Mode is designed for use with (bio)sensors and allows you to do concentration determinations. Extensive help files and prompts guide the user through a typical analysis.

and get immediate feedback on validity of parameters.

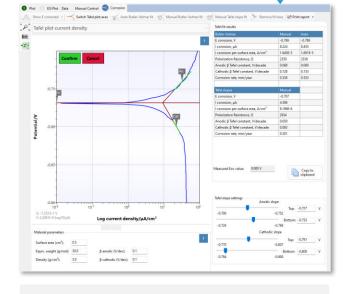
for detailed information or generating new curves.


visibility of curves or groups of curves.

Scripting

The intuitive script editor allows for easily creating a sequence of measurements or other tasks, by means of dragging and dropping actions in a list.

Common Advanced Electrochemistry	Cell	
Measurement Cell SetCurrent & ReadCurrent SetPotential & ReadPotential	On Repeat 1 SetPotential 1.000 V Wait 5 seconds Measurement PSDiffPulse (DPV)	Find peaks 2 Mode: Use window ~ Number of peaks: 1 Window for Peak 1 Left: 0.200 Right: 0.200
NewPlot Wait Repeat £ FindPeaks FastMode	_	
External IO SetChannel NextChannel PrevChannel		Output will be saved in: C:\Users\Niels van Velzen\CloudStation\PSData\scriptou

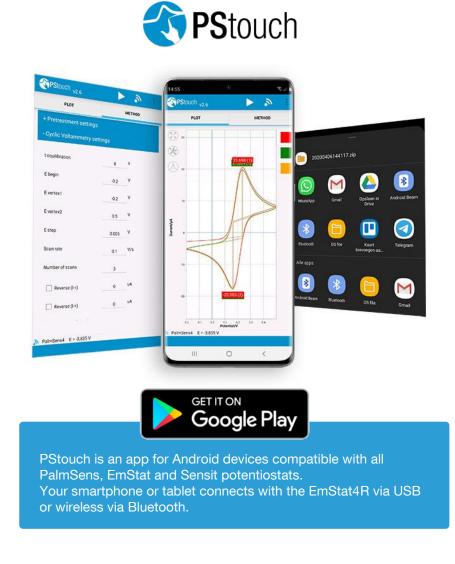

Other functions in PSTrace

- Concentration determination
- Advanced peak search algorithms
- Open your data in Origin and Excel with one click of a button
- Save all available curves, measurement data and methods to a single file
- Load measurements from the internal storage
- Direct validation of method parameters
- Run custom MethodSCRIPTS™

Integration with third party software

- Excel
- Origin
- Matlab
- **ZView**

Minimum System Requirements


- Windows 7, 8, 10 or 11
- 1 GHz or faster 32-bit (x86) or 64-bit (x64) processor 2 GB RAM (32-bit) or 4 GB RAM (64-bit)
- Screen resolution of 1280 x 800 pixels

> See for more information:

www.palmsens.com/pstrace

PStouch: App for Android

PStouch features:

- Setting up and running measurements
- Loading and saving measured curves
- Analysing and manipulating peaks
- Sharing measurement data directly via any service like email or Dropbox
- Concentration determination by means of Standard Addition or Calibration Curve
- Support for PalmSens accessories such as a Multiplexer or Stirrer
- All method and curve files are fully compatible with PSTrace software for Windows.

> See for more information:

www.palmsens.com/pstouch

EmStat4R works with MethodSCRIPT™

The MethodSCRIPT[™] scripting language is designed to integrate our instruments and potentiostat (modules) effortlessly in your hardware setup, product, or experiment.

MethodSCRIPT[™] gives you full control over your potentiostat. The simple script language is parsed on-board the instrument and allows for running all supported electrochemical techniques, making it easy to combine different measurements and other tasks.

MethodSCRIPT can be generated, edited, and executed in PSTrace.

MethodSCRIPT features include:

- Use of variables
- (Nested) loops and conditional logic support
- User code during a measurement iteration
- Exact timing control
- Simple math operations on variables (add, sub, mul, div)
- Digital I/O, for example for waiting for an external trigger
- Logging results to internal storage or external SD card
- Reading auxiliary values like pH or temperature
- and many more..

2 var c 3 var n 3 var p 4 #Select bandwidth of 40 for 10 points per second 5 set_max_bandwidth 40 6 #Set current range to 1 mA 7 set_range ba 1m 8 #Enable autoranging, between current of 100 uA and 1 mA 9 set_autoranging ba 100u 1m 10 #Turn cell on for measurements 11 cell o 11 cell on
12 #equilibrate at -0.5 V for 5 seconds, using a CA measurement
13 meas_loop_ca p c -500m 500m 5
14 pck_start
15 pck_add p
16 pck_add c
17 pck_end
18 endloop
18 endloop
19 endloop
10 endloop
11 endloop
10 endloop
10 endloop
10 endloop
10 endloop
10 endloop
11 endloop
1 10 endocp 19 #Start LSV measurement from -0.5 V to 1.5 V, with steps of 10 mV 20 #and a scan rate of 100 mV/s 21 meas loop lsv p c -500m 1500m 10m 100m 22 #Send package containing set potential and measured WE current. pck_start pck_add p pck_add c 23 24 25 26 pck end #Abort if current exceeds 1200 uA
if c > 1200u 27 28 29 30 endloop 31 #Turn off cell when done or aborted 32 on_finished: 33 cell_off 34 Online support on MethodSCRIPT

Write your own software and integrate (generated) MethodSCRIPTs. No libraries needed.

MethodSCRIPT is parsed on-board the instrument. No DLLs or other type of code libraries are required for using MethodSCRIPT™

Code examples are available for:

See for more information: www.palmsens.com/methodscript

Software Development Kits for .NET

Develop your own application in no time for use with any PalmSens instrument or potentiostat (module). Our SDKs are free of charge.

There are three PalmSens Software Development Kits (SDKs) for .NET. Each SDK can be used with any of our instruments or OEM potentiostat modules to develop your own software. The SDK's come with a set of examples that shows how to use the libraries. PalmSens SDKs with examples are available for the following .NET Frameworks:

- WinForms
- Xamarin (Android)
- WPF

Each SDK comes with code examples for:

- Connecting
- Running measurements and plotting data
- Manual control of the cell
- Accessing and processing measured data
- Analyzing and manipulating data
- Peak detection
- Equivalent Circuit Fitting on impedance data
- Saving and loading files

/// Initializes the EIS method.
/// </summary>
Ireference
private void InitMethod()
{
 __methodEIS.ScanType = ImpedimetricMethod();
 __methodEIS.Potential = 0.0f; //0.0V DC potential
 __methodEIS.Fac = 0.01f; //0.0V RMS AC potential a
 __methodEIS.FreqType = ImpedimetricMethod.enumFrequ
 __methodEIS.MaxFrequency = 1e5f; //Max frequency is
 __methodEIS.NinFrequency = 10f; //Min frequency is
 __methodEIS.nFrequencies = 11; //Sample at 11 diffe
 __methodEIS.EquilibrationTime = 1f; //Equilabrates
 __methodEIS.Ranging.StartCurrentRange = new Current

> See for more information:

www.palmsens.com/sdk

EmStat4R can be re-branded for OEM purposes. Contact us about the possibilities. See also: <u>www.palmsens.com/go</u>

> Please do not hesitate to contact PalmSens for more details: info@palmsens.com

Our Logo

PalmSens BV

The Netherlands

DISCLAIMER

Changes in specifications and typing errors reserved. Every effort has been made to ensure the accuracy of this document. However, no rights can be claimed by the contents of this document.

